Package 'yhatr'

Title: R Binder for the Yhat API
Description: Deploy, maintain, and invoke models via the Yhat REST API.
Authors: Greg Lamp <[email protected]>, Stevie Smith <[email protected]>, Ross Kippenbrock <[email protected]>
Maintainer: Greg Lamp <[email protected]>
License: FreeBSD
Version: 0.15.1
Built: 2025-03-12 05:44:59 UTC
Source: https://github.com/yhat/yhatr

Help Index


Private function that adds a package to the list of dependencies that will be installed on the ScienceOps server

Description

Private function that adds a package to the list of dependencies that will be installed on the ScienceOps server

Usage

add.dependency(name, importName, src, version, install)

Arguments

name

name of the package to be installed

importName

name under which the package is imported (for a github package, this may be different from the name used to install it)

src

source that the package is installed from (CRAN or github)

version

version of the package

install

whether or not the package should be installed in the model image


Private function for catpuring the source code of model

Description

Private function for catpuring the source code of model

Usage

capture.src(funcs, capture.model.require = TRUE)

Arguments

funcs

functions to capture, defaults to required yhat model functions

capture.model.require

flag to capture the model.require function


Checks dependencies and makes sure all are installed.

Description

Checks dependencies and makes sure all are installed.

Usage

check.dependencies()

Private function for checking the size of the user's image.

Description

Private function for checking the size of the user's image.

Usage

check.image.size()

Private predicate function that checks if the protocol of a url is https.

Description

Private predicate function that checks if the protocol of a url is https.

Usage

is.https(x)

Arguments

x

is a url string


Private function that generates a model.require function based on the libraries that have been imported in this session.

Description

Private function that generates a model.require function based on the libraries that have been imported in this session.

Usage

set.model.require()

Deploy a batch model to Yhat servers

Description

This function will deploy your batch model to the yhat servers

Usage

yhat.batchDeploy(job_name, confirm = TRUE)

Arguments

job_name

name of batch job

confirm

boolean indicating whether to prompt before deploying

Examples

yhat.config <- c(
 username = "your username",
 apikey = "your apikey",
 env = "http://sandbox.yhathq.com/"
)
yhat.batch <- function() {
  name <- "ross"
  greeting <- paste("Hello", name)
  print(greeting)
}
## Not run: 
yhat.batchDeploy("helloworld")

## End(Not run)

Deploy a model to Yhat's servers

Description

This function takes model.transform and model.predict and creates a model on Yhat's servers which can be called from any programming language via Yhat's REST API (see yhat.predict).

Usage

yhat.deploy(model_name, packages = c(), confirm = TRUE,
  custom_image = NULL)

Arguments

model_name

name of your model

packages

list of packages to install using apt-get

confirm

boolean indicating whether to prompt before deploying

custom_image

name of the image you'd like your model to use

Examples

yhat.config <- c(
 username = "your username",
 apikey = "your apikey",
 env = "http://sandbox.yhathq.com/"
)
iris$Sepal.Width_sq <- iris$Sepal.Width^2
fit <- glm(I(Species)=="virginica" ~ ., data=iris)

model.require <- function() {
 # require("randomForest")
}

model.transform <- function(df) {
 df$Sepal.Width_sq <- df$Sepal.Width^2
 df
}
model.predict <- function(df) {
 data.frame("prediction"=predict(fit, df, type="response"))
}
## Not run: 
yhat.deploy("irisModel")
yhat.deploy("irisModelCustomImage", custom_image="myImage:latest")

## End(Not run)

Private function for performing a GET request

Description

Private function for performing a GET request

Usage

yhat.get(endpoint, query = c())

Arguments

endpoint

/path for REST request

query

url parameters for request


Import one or more libraries and add them to the Yhat model's dependency list

Description

Import one or more libraries and add them to the Yhat model's dependency list

Usage

yhat.library(name, src = "CRAN", version = NULL, user = NULL,
  install = TRUE)

Arguments

name

name of the package to be added

src

source from which the package will be installed on ScienceOps (github or CRAN)

version

version of the package to be added

user

Github username associated with the package

install

Whether the package should also be installed into the model on the ScienceOps server; this is typically set to False when the package has already been added to the ScienceOps base image.

Examples

## Not run: 
yhat.library("MASS")
yhat.library(c("wesanderson", "stringr"))
yhat.library("cats", src="github", user="hilaryparker")
yhat.library("hilaryparker/cats")
yhat.library("my_proprietary_package", install=FALSE)

## End(Not run)

Private function for determining model dependencies

Description

List all object names which are dependencies of 'model.transform' and 'model.predict' or 'yhat.batch' if this is a batch mode deploy

Usage

yhat.ls(batchMode = FALSE)

Arguments

batchMode

boolean to capture yhat.batch code for a batch job


Private function for performing a POST request

Description

Private function for performing a POST request

Usage

yhat.post(endpoint, query = c(), data, silent = TRUE, bulk = FALSE)

Arguments

endpoint

/path for REST request

query

url parameters for request

data

payload to be converted to raw JSON

silent

should output of url to console be silenced? Default is FALSE.

bulk

is this a bulk style request? Default is FALSE.


Make a prediction using Yhat.

Description

This function calls Yhat's REST API and returns a response formatted as a data frame.

Usage

yhat.predict(model_name, data, model_owner, raw_input = FALSE,
  silent = TRUE)

Arguments

model_name

the name of the model you want to call

data

input data for the model

model_owner

the owner of the model [optional]

raw_input

when true, incoming data will NOT be coerced into data.frame

silent

should output of url to console (via yhat.post) be silenced? Default is FALSE.

Examples

yhat.config <- c(
 username = "your username",
 apikey = "your apikey",
 env = "http://sandbox.yhathq.com/"
)
## Not run: 
yhat.predict("irisModel", iris)

## End(Not run)

Make bulk predictions using Yhat.

Description

This function calls Yhat's bulk API and returns a response formatted as a data frame.

Usage

yhat.predict_bulk(model_name, data, model_owner, raw_input = FALSE,
  silent = TRUE)

Arguments

model_name

the name of the model you want to call

data

input rows of data to be scored

model_owner

the owner of the model [optional]

raw_input

when true, incoming data will NOT be coerced into data.frame

silent

should output of url to console (via yhat.post) be silenced? Default is FALSE.

Examples

yhat.config <- c(
 username = "your username",
 apikey = "your apikey",
 env = "http://sandbox.yhathq.com/"
)
## Not run: 
yhat.predict_bulk("irisModel", iris)

## End(Not run)

Calls Yhat's REST API and returns a JSON document containing both the prediction and associated metadata.

Description

Calls Yhat's REST API and returns a JSON document containing both the prediction and associated metadata.

Usage

yhat.predict_raw(model_name, data, model_owner, raw_input = FALSE,
  silent = TRUE, bulk = FALSE)

Arguments

model_name

the name of the model you want to call

data

input data for the model

model_owner

the owner of the model [optional]

raw_input

when true, incoming data will NOT be coerced into data.frame

silent

should output of url to console (via yhat.post) be silenced? Default is FALSE.

bulk

should the bulk api be used Default is FALSE.

Examples

yhat.config <- c(
 username = "your username",
 apikey = "your apikey"
)
## Not run: 
yhat.predict_raw("irisModel", iris)

## End(Not run)

Private function for recursively looking for variables

Description

Private function for recursively looking for variables

Usage

yhat.spider.block(block, defined.vars = c())

Arguments

block

code block to spider

defined.vars

variables which have already been defined within the scope of the block. e.g. function argument


Private function for spidering function source code

Description

Private function for spidering function source code

Usage

yhat.spider.func(func.name)

Arguments

func.name

name of function you want to spider


Removes a library from the Yhat model's dependency list

Description

Removes a library from the Yhat model's dependency list

Usage

yhat.unload(name)

Arguments

name

of the package to be removed

Examples

## Not run: 
yhat.unload("wesanderson")

## End(Not run)

Private function for verifying username and apikey

Description

Private function for verifying username and apikey

Usage

yhat.verify()